5 Mistakes to Avoid When Designing a 3D Model for 3D Printin

#1
1. Ignoring Material Guidelines

Each and every 3d printing materials is different. Materials can be brittle or strong, flexible or solid, smooth or rough, heavy or light, and so on. This also means that an object should ideally be designed for a specific material. For example, if you know that you want to print your 3D model in Ceramics, there will be specific material-related design recommendations that you need to take into account such as supporting overhanging parts, strengthening elements that are sticking out, rounding off corners, etc.

2. Ignoring Printing Technology

It’s not only the basic chemical characteristics of our printing materials that are different, but also the technologies that are used for printing each of these materials.

The best example of this is interlocking parts: In materials like ABS plastic (Acylonitrile Butadiene Styrene), Polyamide, Alloy 910, Alumide, Nylon, PLA (Polylactic Acid) , HIPS (High Impact Polystyrene), PVA (Polyvinyl Alcohol) or Rubberlike you can print interlocking parts, while in others like Gold, Silver, Bronze, or SLA Resinthis is not possible. The reason behind this is not the material itself, but the technology that is used for printing each of these materials.

For ABS we use Fused Deposition Modeling (filament-based) with an extra nozzle and material for support, for Polyamide, Alumide, and Rubberlike we use Laser Sintering (powder-based), for precious metals we use lost wax casting (based on a 3D print in wax and a mold), and for Resin we use Stereolithography (liquid polymer-based).

Solution: Once again, our materials website holds all the answers. Checking our material pages before you start designing is always key. Also, keep in mind that with the use of different printers and printing technologies, the maximum printing sizes differ. You can find an overview about these here. 3d printing in jharkhand orissa,west bengal india



3. Ignoring Wall Thickness

4. Ignoring File Resolution
For 3D printing, the most common file format is STL (which stands for standard triangle language), which means that your design will be translated into triangles in a 3D space. Most 3D modeling software has the option to export your designs to an STL file and set the desired resolution.

Solution: In most 3D modeling software, when exporting a file you will be asked to define the tolerance for the export. This tolerance is defined as the maximum distance between the original shape and the STL mesh you are exporting. We advise choosing 0.01 mm for a good export. Exporting with a tolerance smaller than 0.01 mm does not make sense because the 3D printers cannot print at this level of detail. When exporting with a tolerance larger than 0.01 mm, triangles might become visible in the 3D print.

5. Ignoring Software Guidelines

Our community uses many different 3D modeling software packages. Some were designed for creating 3D prints, others are mostly used by 3D artists and their designs will require additional editing before they can offer a printable 3D model. For example, applying a wall thickness is automatic in some programs, while you must manually set it in others.

5. Ignoring Software Guidelines

Our community uses many different 3D modeling software packages. Some were designed for creating 3D prints, others are mostly used by 3D artists and their designs will require additional editing before they can offer a printable 3D model. For example, applying a wall thickness is automatic in some programs, while you must manually set it in others.